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Abstract 

This paper generalizes the electromagnetic time reversal 
(EMTR) in mismatched media based bounded phase 
property in locating faults in multiconductor transmission 
lines. The so-called direct-reversed-time transfer function 
is first derived in matrix notation as an analogue of its 
original expression in two-conductor transmission lines. 
The bounded phase property is then extended in both 
symmetrical and unsymmetrical fault scenarios. 

1 Introduction 

The classical applications of time reversal adhere to the 
principle of matched media, namely that the backward-
propagation medium [in the reversed time (RT)] is iden-
tical to the forward-propagation medium [in the direct 
time (DT)] [1].  Inspired by the time-reversal property of 
focusing electromagnetic waves on the original source in 
changing or mismatched media (e.g., [2], [3]), the mis-
matched electromagnetic time reversal (EMTR) fault 
location method was recently proposed relative to the 
classical or matched-EMTR method [4]–[6].  

The bounded phase property came to light in the earliest 
definition and application of the lumped mismatched me-
dia condition in the fault location problem [4]. Specifically, 
it was proved that the phase angle of the direct-reversed-
time transfer function is bounded between 𝜋/2 exclu-
sively at the true fault location. In addition, the property 
was validated in a range of simulation cases considering 
two-conductor homogeneous and inhomogeneous trans-
mission lines and Y-shaped networks.  

On the other hand, it is worth noting that available analy-
ses of applying the bounded phase property to the prob-
lem of fault location in multiconductor transmission lines 
are still lacking. In this regard, the present paper is fo-
cused on extending the concept of lumped mismatched 
media and the bounded phase property to the case of 
three-conductor transmission lines.  

2 Bounded phase property in two-conductor 
transmission lines  

2.1 Lumped mismatched-media condition 

When the principle of matched media is applied to the 
EMTR-based fault location method in electrical power 
systems, since the true fault location is undetermined, a 
set of a priori guessed fault locations needs to be defined, 
allowing reproducing (by numerical simulation) a fault oc-
currence at each of those locations through a transverse 
branch [7], [8]. 

In contrast, the lumped mismatched media condition as-
sumes a non-faulty power network in the backward-pro-
pagation stage, thus excluding the transverse branch set 
up at each guessed fault location to simulate a fault. Con-
sequently, this introduces a lumped mismatch between 
the forward- and backward-propagation media as a result 
of changing the boundary condition at the fault location 
from the fault state to the non-fault state. Note that all the 
line parameters and the other boundary conditions (e.g., 
at the line terminals) of the targeted power network re-
main intact [4]–[6]. 

2.2 Direct-reversed-time transfer function and its 
bounded phase property 

Considering a fault scenario wherein a two-conductor 
transmission line is subject to a short circuit fault, the 
direct-reversed-time transfer function 𝐻 𝑥, 𝑗𝜔  is formu-
lated as the ratio of 𝑉 𝑥, 𝑗𝜔  and 𝑉 𝑥 𝑥 , 𝑗𝜔 , within 
the framework of lumped mismatched media [6]. 𝑉 𝑥,
𝑗𝜔  is the output function (i.e., the voltage along a non-
faulty power network) in the backward-propagation stage 
with 𝑥 being the position coordinate, and 𝑉 𝑥 𝑥 , 𝑗𝜔  
refers to the input function (e.g., a step voltage [6]) that 
emulates the fault occurrence in the forward-propagation 
stage at an arbitrary location 𝑥 𝑥 . 

The spatial dependence of 𝐻 𝑥, 𝑗𝜔  enables the true fault 
location 𝑥  to be distinguished from other guessed fault 
locations using certain features of 𝐻 𝑥, 𝑗𝜔 , for example, 
the energy or the phase angle [4]–[6]. 

The bounded phase property mathematically states that 
the phase angle of 𝐻 𝑥, 𝑗𝜔  presents the following the-
orem 

Theorem 1  

if 𝑥 𝑥 , ∠𝐻 𝑥, 𝑗𝜔 ∈ 𝜋 2⁄ , 𝜋 2⁄  ; 



∀𝑥 𝑥 , ∃ 𝑓 𝜔 2𝜋⁄ : ∠𝐻 𝑥, 𝑗𝜔 ∉ 𝜋 2⁄ , 𝜋 2⁄  . 

The symbol ∠ denotes the phase angle or argument in 
radians. 

Let us consider a fault case in a Y-shaped two-conductor 
transmission line network to visualize the property. Fig-
ure 1 illustrates ∠𝐻 𝑥, 𝑗𝜔  as a function of guessed fault 
locations and frequencies in the x-f plane. This figure 
plots at each guessed fault location only the out-bounded 
phase angle, namely ∠𝐻 𝑥, 𝑗𝜔  ∉ 𝜋 2⁄ , 𝜋 2⁄  . As 
shown, ∠𝐻 𝑥, 𝑗𝜔  at the real fault location 𝑥 𝑥
7.9 km exclusively features a bounded phase angle 
among the guessed fault locations, displaying a null 
distribution throughout the considered frequency range. 

 

Figure 1: Phase angle of the transfer function 𝐻 𝑥, 𝑗𝜔  for the 
case 𝑥 𝑥 7.9 km in a Y-shaped inhomogeneous trans-

mission line network. 

3 Bounded phase property in multiconductor 
transmission lines 

The direct-reversed-time transfer function is generalized 
by illustrating the concept of lumped mismatched media 
to address the fault location problem in multiconductor 
transmission lines. Without loss of generality, the investi-
gation focuses on three-conductor transmission lines, 
which suffice to represent typical single-circuit power net-
works.  

The direct-reversed-time transfer function is derived in 
matrix notation as an analogue of that in two-conductor 
transmission lines. The bounded phase property is ana-
lyzed and extended in various fault cases, including 
symmetrical faults (i.e., three-phase-to-ground faults) 
and unsymmetrical faults (e.g., single-phase-to-ground 
faults).  
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